
The New TotalView

TotalView, CUDA, ReplayEngine, MemoryScape and ThreadSpotter

Chris Gottbrath
March 1st, 2011

What’s New with TotalView

TotalView Team: Application Verification and Optimization

| Copyright © 2011 Rogue Wave Software | All Rights Reserved 2

•  Parallel record and deterministic replay
•  Radically simplifies many debugging tasks
•  Allows straightforward investigation of otherwise

stochastic bugs

TotalView® •  Highly scalable interactive GUI debugger
-  Supports basic and advanced usage
-  Used with workstations and the largest supercomputers
-  Makes developers more productive and reduces project risks

•  Powerful features to enable debugging MPI parallel programs
•  Compatible with wide variety of compilers across numerous operating systems

ReplayEngine

•  Parallel memory analysis and error detection
-  Intuitive for both intensive and infrequent users

•  Inductive user interface
•  Easily integrated into the validation process

MemoryScape

•  Analyzes memory access and thread communication
•  Pinpoints performance issues and provides specific guidance
•  Designed for developers that aren’t performance optimization experts

ThreadSpotter

AddOn:

What is TotalView?

•  Application Analysis and Debugging Tool: Code Confidently

–  Debug and Analyze C/C++ and Fortran on Linux, Unix or Mac OS X
–  Laptops to supercomputers (BG, Cray)
–  Makes developing, maintaining and supporting critical apps

easier and less risky

•  Major Features
–  Easy to learn graphical user interface with data

visualization
–  Parallel Debugging

•  MPI, Pthreads, OpenMP, UPC
•  Optional CUDA Support

–  Includes a Remote Display Client freeing users to work from
anywhere

–  Memory Debugging with MemoryScape
–  Optional Reverse Debugging with ReplayEngine
–  TV Team will include ThreadSpotter for Optimization
–  Batch Debugging with TVScript and the CLI

•  Runtime Memory Analysis : Eliminate Memory Errors

–  Detects memory leaks before they are a problem
–  Explore heap memory usage with powerful analytical tools
–  Use for validation as part of a quality software development process

•  Major Features
–  Detects

•  Malloc API misuse
•  Memory leaks
•  Buffer overflows

–  Supports
•  C, C++, Fortran
•  Linux, Unix, and Mac OS X
•  MPI, pthreads, OMP, and remote apps

–  Low runtime overhead
–  Easy to use

•  Works with vendor libraries
•  No recompilation or instrumentation

–  Enables Collaboration

•  Reverse Debugging Tool: Radically simplify your debugging
–  Captures and Deterministically Replays Execution
–  Eliminate the Restart Cycle and Hard-to-Reproduce Bugs
–  Step Back and Forward by Function, Line, or Instruction

•  Major Features
–  Simple extension to TotalView

•  No recompilation or instrumentation
•  Explore data and state in the past just like in a

live process
–  Supported on Linux x86 and x86-64
–  Supports MPI, Pthreads, and OpenMP

What is ThreadSpotter?

•  Runtime Cache Performance Optimization Tool: Tune into the Multi-Core Era
–  Realize More of the Performance Offered by Multi/Many-Core Chips
–  Quickly Detects and Prioritizes Issues -- and then Provides Usable Advice!

•  Brings Cache Performance Into Reach for Every Developer
•  Makes Experienced Cache Optimizers Hyper-Efficient

•  Features
–  Supports Linux x86/x86-64
–  Any compiled code
–  Runtime Analysis

•  Low overhead
–  Cache Modeling

•  Prioritizes Issues
•  Identifies Problem Lines of Code

–  Provides Advice
•  Explanations
•  Examples
•  Detailed statistics (if desired)

7

•  Using tvscript, multiple debugging sessions can be run without the need for
 recompiling, unlike with printf

•  A single compile is all that’s needed, i.e.,
•  gcc -g -o server-dbg server.c

•  tvscript syntax:
•  tvscript [options] [filename] [-a program_args]

TotalView Technologies Confidential

Batch Debugging

tvscript
•  tvscript lets you define what events to act on, and what actions to

 take
•  Typical events

•  Action_point
•  Any_memory_event
•  Guard_corruption
•  error

•  Typical actions
•  Display_backtrace [-level level-num] [num_levels] [options]
•  List_leaks
•  Save_memory
•  Print [-slice {slice_exp] {variable | exp}

•  tvscript also supports external script files, utilizing TCL within a CLI file
 allowing the generation of even more complex actions to events

tvscript
•  Example

•  The following tells tvscript to report the contents of the foreign_addr structure each
 time the program gets to line 85

•  -create_actionpoint "#85=>print foreign_addr”
•  Typical output blocks sample with tvscript:
•  !!!

!!
•  ! Print
•  !
•  ! Process:
•  ! ./server (Debugger Process ID: 1, System ID: 12110)
•  ! Thread:
•  ! Debugger ID: 1.1, System ID: 3083946656
•  ! Time Stamp:
•  ! 06-26-2008 14:04:09
•  ! Triggered from event:
•  ! actionpoint
•  ! Results:
•  ! foreign_addr = {
•  ! sin_family = 0x0002 (2)
•  ! sin_port = 0x1fb6 (8118)
•  ! sin_addr = {
•  ! s_addr = 0x6658a8c0 (1717086400)
•  ! }
•  ! sin_zero = ""
•  ! }
•  !!!

TotalView Remote Display Client

•  The Remote Display Client offers
 users the ability to easily set up
 and operate a TotalView debug
 session that is running on another
 system.

•  Provides for a connection that is
•  Easy
•  Fast
•  Secure

•  The Remote Display Client is
 available for:
•  Linux x86
•  Linux x86-64
•  Windows XP
•  Windows Vista
•  Mac OS X Leopard and Snow

 Leopard
•  The Client also provides for

 submission of jobs to batch
 queuing systems PBS Pro and
 Load Leveler

TotalView 8.9, MemoryScape 3.1, ReplayEngine 1.8

•  What is new
–  TotalView for CUDA (add on feature)
–  C++View
–  Multi-Dimensional Array Display
–  Parallel Backtrace
–  TVScript for BlueGene and Cray XT
–  Remote Display Client - support for Mac OS X and Windows 7
–  ReplayEngine for Infiniband (select configurations)
–  Significant Bug Fixing: 85 total, 45 user
–  Numerous Platform updates

TotalView for CUDA

•  Optional Feature (separately licensed)
•  Characteristics

–  Debugging of application running on the
 GPU device (not in an emulator)

–  Full visibility of both Linux threads and GPU
 device threads

–  Fully represent the hierarchical memory
–  Thread and Block Coordinates
–  Device thread control
–  Handles CUDA function inlining
–  Reports memory access errors
–  Multi-Device Support
–  Can be used with MPI

•  Supported with
–  CUDA 3.0 SDK
–  running on a Linux-x86-64 environment that is

 supported for both CUDA and TotalView
•  RHEL 4u8, 5u3
•  SLES 11, OpenSUSE 11.1

C++View

•  C++View is a simple way for you to define type transformations
–  Simplify complex data
–  Aggregate and summarize
–  Check validity

•  Transforms
–  Type-based
–  Compose-able
–  Automatically

visible
•  Code

–  C++
–  Easy to write
–  Resides

in target
–  Only called by

TotalView

Multi-Dimensional Array Viewer

•  See your arrays on a
 “Grid” display

•  2-D, 3-D… N-D
•  Arbitrary slices
•  Specify data

 representation
•  Windowed data access

–  Fast

Parallel Backtrace View

•  Groups threads by
 common stack
 backtrace frames

•  Starts with a
 compact
 representation of
 large jobs

•  Text Based Tree
–  Expand/Collapse

•  Elide Tree
•  Shows

–  Status
–  PC

•  Dive or Dive in New

Enhanced ReplayEngine Support

•  ReplayEngine
–  Provides for record and deterministic replay
–  Supported on Linux-x86 and Linux-x86-64

•  Typical Cluster Interconnects
–  Gigabit Ethernet
–  Infiniband

•  Mellanox and QLogic
•  Compatibility Channel: IPoverIB
•  Channels: IBVerb, PSM (QLogic only)
•  Changing IB channels may require a recompile (MVAPICH) or a runtime switch (OpenMPI)

•  ReplayEngine has extended support for Infiniband native transport channels
–  Ethernet: works with MPICH, MPICH2, Open MPI, Intel MPI, MPT
–  Mellanox Infiniband

•  IPoverIB works with Open MPI, MVAPICH, Intel MPI
•  IB verb works with Open MPI, MVAPICH

–  Qlogic Infiniband
•  IPoverIB works with Open MPI, MVAPICH, Intel MPI
•  IB verb works with Open MPI, MVAPICH
•  PSM is not supported

–  MVAPICH2 is not supported

New Features in Next Versions

•  TotalView
–  CUDA 3.2 support

•  New CUDA Registers
•  CUDA Call Stacks
•  Host-Pinned Memory Support
•  CUDA CLI Commands

–  Support for Bull MPI Environment
–  CLI Array Statistics
–  Platform Updates

•  RHEL 6, Fedora 14, GCC 4.5.2, Intel Composer XE, PGI 10.9

•  ReplayEngine
–  Improved Infiniband Support

•  Expected : Mid Q2

TotalView for CUDA

GPU Compute Accelerators

•  Lots of Excitement
•  Technology Trends

–  CPU Processors Multi-Core
–  GPUs have very many extremely simple cores
–  Leverages gaming/graphics market

•  Multiple Vendors
–  NVIDIA Tesla and Fermi
–  AMD Firestream

•  Multiple Potential Language/Runtime Choices
–  NVIDIA CUDA for C
–  OpenCL
–  PGI Accelerated Fortran
–  PGI CUDA for Fortran
–  CAPS HMPP
–  OpenMP

NVIDIA GPU accelerator architecture

•  Used in conjunction with conventional CPUs
–  Acts as an accelerator to a host process
–  Host processes may be clustered together using MPI

•  Distinct processor architecture
–  Compared to host CPU
–  Features vector instructions

•  Massively multi-core
–  Hundreds of streaming multiprocessors
–  Potentially 10k+ thread contexts

•  Hierarchical memory with more layers
–  Local (thread)
–  Shared (block)
–  Global (GPU)
–  System (host)

Programming for the GP-GPU

•  CUDA
–  Function-like kernels are written for the calculations to be performed on

 the GPU
•  Data parallel style, one kernel per unit of work

–  Presents a hierarchical organization for thread contexts
•  2D grid of blocks
•  3D block of thread

–  Exposes memory hierarchy explicitly to the user
–  Includes routines for managing device memory and data movement to

 and from device memory using streams
•  Programming challenges

–  Coordinating CPU code + device code
–  Understanding what is going on in each kernel

•  Exceptions
–  Understanding memory usage
–  Understanding performance characteristics

TotalView for CUDA

•  Optional Feature (separately licensed)
•  Characteristics

–  Debugging of application running on the
 GPU device (not in an emulator)

–  Full visibility of both Linux threads and GPU
 device threads

–  Fully represent the hierarchical memory
–  Thread and Block Coordinates
–  Device thread control
–  Handles CUDA function inlining
–  Reports memory access errors
–  Multi-Device Support
–  Can be used with MPI

•  Supported with
–  CUDA 3.0 SDK
–  running on a Linux-x86-64 environment that is

 supported for both CUDA and TotalView
•  RHEL 4u8, 5u3
•  SLES 11, OpenSUSE 11.1

Separate Image

•  When a new kernel is loaded you get the option of setting
 breakpoints

Storage Qualifiers

•  Denotes location in hierarchical memory
–  Part of the type
–  Each memory space has a separate address space so 0x00001234

 could mean several places
•  Used throughout expression system

–  You can cast to switch between different
spaces

Device Threads and Warps

•  Warps advance synchronously
–  They share a PC

•  Single stepping
–  Advances the warp containing the focus thread
–  Stepping over a __syncthreads() call advances all the relevant threads

•  Continue and runto
–  Continues more than just the warp

•  Halt
–  Stops all the host and device threads

Device Thread Navigation

•  Two coordinate systems
–  Hardware and Logical

•  Hardware: Device, SM, Warp, Lane
•  Logical: 2D Grid of Blocks, 3D Thread Within Grid

–  Toggle to switch input
–  Spinboxes
–  Invalid selections are refused

•  Logical coordinates are displayed elsewhere in the GUI

GPU Device Status Display

•  Display of PCs across SMs, Warps and Lanes
•  Updates as you step
•  Shows what

hardware is
in use

•  Helps you
map between
logical and
hardware
coordinates

Debugging CUDA applications

•  Applications can take advantage of
–  Kernels execute asynchronously

•  Overlap of communication and computation
•  The same kernel can operate on multiple streams

–  Multi-process applications
–  Utilization of multiple GPUs at the same time
–  Multi-level parallelism

•  MPI + OpenMP + CUDA

•  The debugger should support
–  Codes that use the full capabilities of CUDA
–  Troubleshooting problems that might behave differently based on the relative timing of asynchronous

 events
–  This will require advanced debugging interfaces in the CUDA runtime environment

•  Interface rapidly developing with each release of the SDK
–  Rogue Wave is working closely with NVIDIA to take advantage of capabilities as they are introduced

Resource Slides

What is TotalView?

•  What is TotalView?
–  Program Analysis, Debugging and Optimization Tool
–  For developers working with C/C++ and Fortran on Linux,

 Unix or Mac OS X
–  Workstations to Supercomputers (BG, Cray)
–  Makes developing, maintaining and supporting critical

 applications easier and less risky
•  Major Features

–  Easy to learn graphical user interface with data
 visualization

–  Parallel Debugging
•  MPI, Pthreads, OpenMP, UPC
•  Optional CUDA Support

–  Includes a Remote Display Client freeing users to work
 from anywhere

–  Memory Debugging with MemoryScape
–  Optional Reverse Debugging with ReplayEngine
–  TV Team will include ThreadSpotter for Optimization
–  Batch Debugging with TVScript and the CLI

How can TotalView help you?

•  Threads and/or MPI
–  When you have

•  Deadlocks and hangs
•  Race conditions

–  It provides
•  Asynchronous thread control
•  Powerful group mechanism

•  Fortran and/or C++
–  Complex data structures

•  Diving and recursive dive
–  STL Collection Classes

•  STLView
–  Rich class hierarchies

•  Powerful type-casting features

•  Memory Analysis
–  Leaks and Bounds Errors

•  Automatic error detection tools
–  Out of Memory Errors

•  Analysis of heap memory
 usage by file function and line

•  Data Analysis
–  Numerical errors

•  Extensible data visualization
•  Slicing and filtering of arrays
•  Powerful expression system
•  Conditional watchpoints

Debugging means examining a specific controlled instance of program execution
Provides an answer to the question : “What is my program really doing?”

